
Statistical entropy of a binary hard-sphere mixture: the low-density limit

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 8137

(http://iopscience.iop.org/0953-8984/8/43/010)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 04:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 8137–8144. Printed in the UK

Statistical entropy of a binary hard-sphere mixture: the
low-density limit

F Saija and P V Giaquinta†
Istituto Nazionale per la Fisica della Materia and Università degli Studi di Messina, Dipartimento
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Abstract. We have studied the virial expansion of the configurational entropy of a binary
mixture of unequal hard spheres as a function of the diameter ratio and of the relative
concentration of the two species. The entropy was analysed as a sum of two terms: a pair
term, which arises from two-particle spatial correlations, and a residual contribution that is
associated with correlations involving more than two particles. We discuss the behaviour of this
last quantity in the regime of strongly asymmetric sizes and concentrations with specific regard
to the onset of the mechanism leading to phase separation at a thermodynamic level.

1. Introduction

The thermodynamic stability of fluid mixtures and, in particular, the problem of phase
segregation are currently subjects of great experimental interest [1, 2]. On the theoretical
side, the occurrence of a demixing transition in a binary mixture has been demonstrated
for some rather simplified lattice and continuum models with barely repulsive interactions
as the result of purely entropic effects which play a crucial role in the regime of highly
asymmetric sizes and concentrations [3–6]. The behaviour of a two-component mixture
composed of unequal hard spheres has been also analysed through a variety of approximate
theoretical techniques including integral-equation theories [7, 8], density-functional methods
[9], and other approaches [10, 11]. However, a definite assessment on this question is still
lacking because of the absence of reliable numerical simulation results in the regime that is
relevant for the onset of the phenomenon [12–14].

Recently, we have studied the configurational entropy of a binary hard-core mixture
in the fluid phase in the Percus–Yevick (PY) approximation [15]. This type of analysis
was carried out by explicitly calculating the contribution which arises from two-particle
correlations. In this regard, we found rather unambiguous interrelations between the
transitions undergone by the mixture (i.e., freezing, phase separation) and the thermodynamic
behaviour of the residual multiparticle entropy1s. This quantity is obtained from the total
entropy of the fluid after subtraction of a (qualitatively uninteresting) background value that
is calculated as the sum of the ideal and pair terms, and displays a nonmonotic behaviour
as a function of the total packing fraction. We noted that the crossover undergone by1s

from negative to positive values is a rather sensitive indicator of the structural changes
which take place in the system on a local scale. In particular, when the size ratio of the
two species is not very far from one, the ordering threshold traced through this one-phase
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entropic criterion is in fairly good agreement with the available simulation data for the
freezing point of the mixture. In the opposite regime of very different diameters and, more
specifically, for values of the size ratio less than about 0.2, the locus of the points where1s

vanishes has a very different behaviour as a function of the relative concentration, dropping
below the freezing threshold of the pure fluid. We surmised that this fact signals the onset
in the system of a new type of order and noted also that a better resolution at very low
concentrations would call for an analytical expansion of the theory to be carried out in the
limit of very small packing fractions.

In this paper we present such an expansion that is pushed up to a level which corresponds
to the virial expansion of the pressure truncated at the fourth order in the density [16, 17].

2. Virial expansion of the statistical entropy

The total excess entropy of a multicomponent system can be expressed as an infinite series:

s(ex) =
∞∑

n=2

sn (1)

wheres(ex) is the excess entropy per particle in units of the Boltzmann constant, and the
partial entropiessn are obtained from the integrated contributions of the spatial correlations
betweenn-tuples of particles. In particular, the two-body term can be written as [15]

s2 = −1

2
ρ

∑
ij

xixj

∫ {
gij (r) ln

[
gij (r)

] − gij (r) + 1
}

dr (2)

whereρ = ρ1+ρ2 is the total number density,xi is the mole fraction of speciesi (i = 1, 2),

and the quantitiesgij (r) are the partial pair distribution functions. The residual multiparticle
entropy

1s ≡ s(ex) − s2 (3)

despite its minor quantitative relevance in the overall balance, turns out to be a rather
sensitive indicator of the structural and dynamical changes which take place in the system
[15]. For a mixture composed of hard-core particles with diametersσi, the exclusion terms
in equation (2) can be integrated out to give

s2(ρ, x1) = −B(x1)ρ − 2πρ
∑
ij

xixj

∫ ∞

σij

{
gij (r) ln

[
gij (r)

] − gij (r) + 1
}
r2 dr (4)

where

B(x1) = 2

3
πx2

1σ 3
11 + 4

3
πx1(1 − x1)σ

3
12 + 2

3
π(1 − x1)

2σ 3
22 (5)

is the second-order virial coefficient of the mixture andσij = (σi + σj )/2. In the following,
we denote the diameter ratio asR = σ2/σ1 6 1.

The expansion of the total excess entropy that is obtained after integration of the
compressibility factor yields at third order in the density

s(ex)(ρ, x1) = −B(x1)ρ − 1

2
C(x1)ρ

2 − 1

3
D(x1)ρ

3 + · · · (6)

whereC(x1) andD(x1) are the third-order and fourth-order virial coefficients, respectively
[16, 17].
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Figure 1. Radial distribution functionsgij (r), plotted
as functions ofr/σ1 for R = 0.1, x1 = 5×10−3 and for
two values of the total packing fraction: (a)η = 0.05;
(b) η = 0.1. The dotted curves refer to the low-density
expansion, while the continuous curves represent the
Percus–Yevick results.

Figure 2. Residual multiparticle entropy1s(η, x1; R)

plotted as a function of the total packing fraction
η for R = 0.1 and for two values of the larger-
particle mole fraction: (a)x1 = 5 × 10−3; (b) x1 =
1 × 10−2. The dotted curves refer to the low-density
expansion, while the continuous curves represent the
Percus–Yevick results.

As far as the ‘pair’ entropys2 is concerned, we expand the radial distribution functions
gij (r) of the mixture in powers of the density as [18]

gij (r) = 1 + e−βuij (r)
∞∑

n=1

ρng
(n)
ij (r) (7)

whereuij (r) is the pair interaction potential for the interaction between two particles of
speciesi and j, respectively, andβ is the inverse temperature in units of the Boltzmann
constant. The first-order contributions to the pair distribution functionsg

(1)
ij (r) are evaluated

explicitly for a binary hard-sphere mixture in the appendix. After using equation (7) in the
expansion of the integrand which appears in equation (4), we obtain at second order in the
density

gij (r) ln
[
gij (r)

] − gij (r) + 1 = 1

2

[
g

(1)
ij (r)

]2
ρ2 + · · · (8)

where the first-order term is found to vanish exactly. Using equations (A2)–(A4), the density
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expansion ofs2 pushed to third order inρ reads

s2(ρ, x1) = −B(x1)ρ − πK(x1)ρ
3 + · · · (9)

where

K(x1) = x4
1

∫ 2σ11

σ11

[
A(r)

]2
r2 dr + 2x3

1(1 − x1)

∫ 2σ12

σ12

[
A(r)C(r)

]
r2 dr

+ x2
1(1 − x1)

2
∫ 2σ12

σ12

[
C(r)

]2
r2 dr + x2

1(1 − x1)
2
∫ 2σ12

σ12

[
C(r)

]2
r2 dr

+ 2x1(1 − x1)
3
∫ 2σ12

σ22

[
B(r)C(r)

]
r2 dr + (1 − x1)

4
∫ 2σ22

σ22

[
B(r)

]2
r2 dr

+ 2x3
1(1 − x1)

∫ σ11+σ12

σ12

[
D(r)

]2
r2 dr

+ 4x2
1(1 − x1)

2
∫ σ12+σ22

σ12

[
D(r)E(r)

]
r2 dr

+ 2x1(1 − x1)
3
∫ σ12+σ22

σ12

[
E(r)

]2
r2 dr. (10)

The quantitiesA(r), B(r), C(r), D(r), and E(r) are defined in the appendix. After
combining equation (6) with equation (9), we obtain

1s(ρ, x1) = −1

2
C(x1)ρ

2 − 1

3

[
D(x1) − 3πK(x1)

]
ρ3 + · · · . (11)

In the limit wherex1 = 1, equation (11) consistently reduces to the homologous expression
for the one-component case [19].

3. Results

Figure 1 shows the pair distribution functions of the mixture in the low-density asymmetric
regime. Thegij (r)s are computed through the first-order virial expansion forR = 0.1,

the larger-particle mole fractionx1 = 5 × 10−3, and for two values of the total packing
fraction η = 1

6πρ(x1σ
3
1 + x2σ

3
2 ). The first-order expansions are then compared with

the corresponding quantities evaluated in the PY approximation after Fourier inverting
the analytical expressions for the partial structure factors. The resulting functions were
calculated over a range of 30 large-sphere diameters with a spatial resolution1r/σ1 '
3 × 10−5 in order to obtain reliable estimates also for the residual multiparticle entropy.

The behaviour of1s(η, x1; R) as a function ofη is then shown forR = 0.1 in
figure 2 for two values ofx1. We note that in this range of the parameters the first-order
approximation for1s is qualitatively consistent with the corresponding PY estimate.

The locus of pointsη0(x1; R) where the residual multiparticle entropy vanishes is shown
in figure 3 for five values of the diameter ratio. We remark that, by construction, this quantity
conveys reliable information only in a range of low enough total densities. The behaviour
for x1 approaching both zero and one is thus manifestly unphysical. For comparison, we
also show some data obtained with the PY approximation forR = 0.1. These data confirm
that the functional behaviour of1s as a function of the concentration is already correctly
embodied in the density expansion truncated at the third order. Similar results have been
recently obtained with a different integral closure [8].

A sharp change of behaviour in the compositional dependence ofη0(x1; R) was already
observed forR . 0.2 in [15], where the authors noticed that, for such values of the diameter
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Figure 3. The locus of pointsη0(x1; R) where1s(η, x1; R) = 0, plotted as a function of the
larger-particle mole fractionx1 for five values of the size ratio. The solid circles represent the
Percus–Yevick results forR = 0.10.

ratio, this function lay below the ‘pure’ hard-sphere freezing point over a rather wide
composition range. This circumstance is confirmed by the present results even in the regime
of very dilute concentrations of the larger-sphere component. In fact, as seen from figure
3, upon adding larger particles onto a solvent formed by the smaller spheres, the ordering
threshold that is monitored through the zero of1s initially drops down to lower and lower
values of the total packing fraction. This behaviour indicates that, when the concentration of
the larger-sphere component is very small, the local structural mechanism that was originally
responsible for the freezing of the formerly pure solvent fluid is sensitively affected by the
presence of the solute. As a result, the ordering threshold is pushed toward a range of
densities where one can safely exclude the solidification of the mixture as a whole. This
trend inverts at a rather small value of the concentration (x

(min)

1 ' 5 × 10−3 for R = 0.1)

beyond which the curve starts rising again. The ensuing minimum inη0(x1; R) becomes
sharper and deeper as the size difference between the two species increases, while shifting to
lower values ofx1. It thus follows that in a strongly asymmetric mixture whose concentration
is close to that which corresponds to the minimum, the range of total packing fractions within
which 1s is negative reduces dramatically (see figure 2).

The clear indication of two distinct structural regimes which emerges from figure 3
(corresponding, respectively, to concentrations lower or greater thanx

(min)

1 ) is consistent
with a recent study of the virial equation of state of the mixture expanded up to the fifth
order in the density [20]. In particular, the negative deviation of the fifth-order virial
expansion from the ‘reference’ BMCSL equation of state which was proposed by Boublı́k
[21] and by Mansoori, Carnahan, Starling, and Leland [22] is found to be maximal, for an
assigned value of the size ratio, in the same region of concentrations.

The identification of the two regimes is also evident in a representation of the data
where the smaller-sphere packing fractionη2 is plotted as a function ofη1, each pair(η1, η2)

corresponding to a point of the curveη0(x1; R). In figure 4, states of constant mole fraction
lie on straight lines which radiate from the origin, while states of constant total packing
fraction form lines which intersect both axes at 45◦. We also note that, for an assigned value
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Figure 4. The smaller-sphere packing fractionη2 plotted as a function of the larger-
sphere packing fractionη1 for five values of the size ratio along the locus of points where
1s(η, x1; R) = 0.

of R, the residual multiparticle entropy is positive at all points lying on the right of the curve
η2(η1; R). It is rather apparent that such curves have two ‘branches’: a steeply decreasing
one, which corresponds to the lower-concentration portion of the curves shown in figure
3 (i.e., x1 . x

(min)

1 ), and a rather flat one that is associated with the higher-concentration
regime. Furthermore, the first branch shows a re-entrant behaviour forR . 0.2. In this
representation, the larger-sphere packing fraction unveils as a sort of ‘order parameter’ of
the model: in fact, it is only forη1 greater than a ‘critical’ value roughly corresponding
to the ‘knee’ of the curve that the mixture starts ordering on a microscopic scale in a way
that is manifestly different according to which branch one is considering. In fact, when
moving along the steepest branch,η2 responds in a very sensitive way to small changes
of η1 whose variation remains confined inside a rather thin region. In contrast, along the
second branch,η2 changes very slowly as the larger-sphere mole fraction raises to values
which correspond to a denser and denser mixture. The sharp separation between two such
regimes fades away with increasing values of the size ratio(R . 0.3). On the other hand,
the systematic shift of the curves withR towards greater values ofη1 is a clear indication
of the lower effectiveness of the osmotic depletion activity exerted by the smaller spheres
in competition with thermal disordering effects.

The ordering lines traced through the present entropic criterion are qualitatively similar
to the phase-separation boundaries determined by Steiner and co-workers [1] for a system
of nearly monodisperse emulsion droplets of two different sizes (see, in particular, figure
2 of [1]). These authors, as well as Imhof and Dhont [2], suggest that phase separation
occurs between a fluid and a solid formed by the larger spheres only. Their conclusion
is consistent with the present theoretical findings in that the residual multiparticle entropy
bridges ‘continuously’ between the two border situations corresponding to the freezing of
the two pure fluids. As far as the quantitative aspects of the calculation are concerned,
we recall that, apart from the approximate nature of the current estimate that has been
obtained for1s through its third-order-density expansion, the present criterion usually
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anticipates the true phase boundary of the system [15]. Furthermore, as also stressed by
Imhof and Dhont [2], the phase lines determined experimentally appear to be very sensitive
to even small deviations from the bare hard-sphere behaviour of the model particles used.
This fact, together with the sensitivity of different theoretical closures to the nature of
the approximations used in the calculations [9–11], makes difficult a truly quantitative
comparison between theory and experiment whose mutual agreement remains essentially
confined to a qualitative level.

4. Concluding remarks

In this paper we have carried out an analysis of the configurational entropy of a binary
hard-sphere mixture in the limit of very low densities. The results confirm the existence
of two rather distinct structural regimes which show up for strongly asymmetric sizes and
concentrations. In particular, the ordering thresholds traced through the zeros of the residual
multiparticle entropy indicate that, upon increasing the concentration of the larger-sphere
component, the nature of the transition undergone by the mixture changes in a rather neat
way: in fact, the local ordering of the fluid takes place for lower and lower values of the
total packing fraction up to a composition beyond which an increase of the larger-sphere
mole fraction tends to widen again the disorder region. This behaviour is closely reminiscent
of the thermodynamic phenomenology associated with the interplay between the demixing
and freezing transitions in a two-component mixture.
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Appendix. Density expansion of the pair distribution functions

The functionsg(1)
ij (r) which appear in equation (7) can be expressed as cluster integrals in

the form

g
(1)
ij (r12) =

2∑
k=1

xk

∫
fik(r13)fkj (r32) dr3 (A1)

wherefij (r) = exp[−βuij (r)] − 1 are the Mayer functions. For a mixture of hard-core
particles the integral in equation (A1) represents the region of space that is excluded by two
spheres centred atr1 andr2 to the centre of a third sphere located inr3. We then get

g
(1)

11 (r) = x1A(r) + (1 − x1)C(r) (A2)

g
(1)

12 (r) = x1D(r) + (1 − x1)E(r) (A3)

g
(1)

22 (r) = x1C(r) + (1 − x1)B(r) (A4)

with

A(r) = 4

3
πσ 3

11

[
1 − 3

4

r

σ11
+ 1

16

(
r

σ11

)3]
2(2σ11 − r) (A5)

B(r) = 4

3
πσ 3

22

[
1 − 3

4

r

σ22
+ 1

16

(
r

σ22

)3]
2(2σ22 − r) (A6)
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C(r) = 4

3
πσ 3

12

[
1 − 3

4

r

σ12
+ 1

16

(
r

σ12

)3]
2(2σ12 − r) (A7)

D(r) =
{
πσ11

[
σ11 − σ11

(
r2 + σ 2

11 − σ 2
12

2rσ11

)]2

− π

3

[
σ11 − σ11

(
r2 + σ 2

11 − σ 2
12

2rσ11

)]3

+ πσ12

[
σ12 − σ12

(
r2 + σ 2

12 − σ 2
11

2rσ12

)]2

−π

3

[
σ12 − σ12

(
r2 + σ 2

12 − σ 2
11

2rσ12

)]3}
2(σ11 + σ12 − r) (A8)

E(r) =
{
πσ12

[
σ12 − σ12

(
r2 + σ 2

12 − σ 2
22

2rσ12

)]2

− π

3

[
σ12 − σ12

(
r2 + σ 2

12 − σ 2
22

2rσ12

)]3

+ πσ22

[
σ22 − σ11

(
r2 + σ 2

22 − σ 2
12

2rσ22

)]2

−π

3

[
σ22 − σ22

(
r2 + σ 2

22 − σ 2
12

2rσ22

)]3}
2(σ22 + σ12 − r) (A9)

where2(r) is the Heaviside step function.
When the diameters of the two species become equal(R = 1), the first-order expressions

for the radial distribution functionsg(1)
ij (r) reduce to those of the one-component case [23].
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